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The boundary conditions for vortex particles in two-dimensional
channel flow with periodic boundary conditions require infinitely many
image vortices. By using the Poisson summation formula with Ewald's
trick the effect of image vortices can be calculated efficiently. When
combined with a tree code and appropriate smoothing, a fast robust
algorithm can be designed. Applications to Kirchoff and Kida vortices
are described.  © 1993 Acagemic Press, Inc.

1. INTRODUCTION

Tropical cyclones can be viewed as patches of vorticity
moving in a two-dimensional inviscid fluid (the barotropic
plane) [157. Similar models apply to the great spots on
Jupiter and Neptune [13]. In order to follow the long term
evolution of these systems numerical methods which trans-
port vorticity accurately are required. Vortex particle
methods [1, 4, 11, 14] are a natural candidate for this pur-
pose, and they have the bonus that detailed Lagrangian
information is given about the motion of parcels of fluid.

For numerical purposes the infinite barotropic plane
must be replaced by a finite computational plane. Boundary
conditions are then chosen to reduce edge effects. The typi-
cal configuration is a rectangular computational region
with periodic boundary conditions on the east-west ends,
and free-slip conditions on the north-south boundaries
which are assumed impenetrable [15].

If vartex methods are to be applied to this configuration,
infinitely many image vortices are required to satisfy the
boundary conditions. Greengard [ 7] has considered a ver-
sion of this probiem with pure channel flow and has shown
that it can be computed efliciently with a fast multipole
moment algorithm. Greengard works with complex
variables which enable the infinite terms from the
north-south boundaries to be summed to a compiex cosh
function. This procedure could be extended to deal with the
periodic east—west conditions. However, we wish to allow
for smoothing of close interactions and this makes
Greengard’s method less attractive because some inter-
actions must be treated separately. For the problem con-
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sidered here, a flexible and efficient algorithm can be divised
by using the Poisson summation formula and Ewald’s [5]
trick to tame the image vortices (Ewald’s trick was used by
Ewald to determine the lattice energy of a crystal). The end
result is that the infinite sum is split into a rapidly con-
vergent direct interaction and a rapidly convergent sum
which represents the far field. By combining this with a tree
code, the velocity of any vortex particle can be computed
rapidly. Smoothing, with a local smoothing for each vortex
particle, can be included easily.

In this paper details of the new method and applications
to the Kirchoff and Kida vortices will be described.

2. THE VORTEX PARTICLE CONFIGURATION

We consider a set of N, vortex particles in a rectangle
with sides of length a parallel to the x axis (west—east) and
sides of length b parallel to the y axis {south-north). The
origin of the coordinate system is the lower left (southwest)
corner. The system is periodic in the east-west direction.
Each vortex particle has infinitely many images due both to
the periodic condition and to the impenetrabie north and
south boundaries.

To satisfy the north and south boundary conditions a
vortex particle with coordinates x, y and strength K
requires image particles of the same strength with coor-
dinates

x, y+ 2nb,

n=12, .. 2.1)

and image particles of opposite strength with coordinates

X, —y =+ 2nb, n=0,1,2,.. (2.2)
These images arc generated by first finding the two images
of the original particle in the north and south boundaries,
then their images, and so on. In addition, each of the
previous images has an infinite number of images from the
periodic conditions. These images have x coordinates
xt+tma,m=1,2, ..
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The contribution to the velocity of the vortex particle
with coordinates x,, y, from the vortex particle, with
strength X at x, y and its images, is

K g = Y,— ¥y—2nb
Ay, = —— £
N 2"m=z_w ,,=z,'c,o(J’;;—J’—an)2+(xp—x—mr:z)2
K Z z y,+ y—2nb
+— yd
2z mzz_m u}_:m (¥, + y—2mb) + (x,— x— ma)’
(2.3)
and
K & = X, —Xx—ma
Ay, =— P
Uy Zﬂm;‘_w .\ Z_m (y,— ¥ —2nbY + (x,— x— ma)’
_K i i X,—X—ma
n, = 2 (v, y—2m0) 4+ (x,— x—ma)
(2.4)

The numerical problem is that the total velocity for the
vortex article at x, y requires the evaluation of (2.3) and
(2.4) for all the other vortex particles in the rectangle. Any
one of the summations (m ot n) can be completed analyti-
cally using Mittag-Leffler expansions. The remaining
summation then creates awkward problems which are
compounded when smoothing is included. We prefer to
keep the functions simpie and tackle the double summation
directly. In the next two sections we show how this can be
done efficiently.

3. EVALUATING THE IMAGE SUMMATION

The summations are of the form

Zanma

(3.1)
which can be written

ZanmEnm_Fzz.fnm(l_Enm): (32)

where E,,, is a function (E for Ewald) which is small for
|n], |m| large. Typically E,,—0 like a Gaussian as
|n), |m| = co. The first summation in (3.2) is then easy to
evaluate. The second summation can be transformed by the
Poisson summation formula to give a rapidly convergent
series.
The Poisson summation version of the second summa-
tionin (3.2) is
> X7

p=—00 §=—a —F" T

_’zni[pn+sm?f‘nm{ Enm} dn dm.

(3.3)
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The choice of E,,, is crucial. It must allow the first summa-
tion to be evaluated easily, and it must allow the Fourier
transforms in (3.3) to be evaluated in a convenient form.
A Gaussian E has the desired properties.

Consider the application of these ideas to the first
summation in (2.3):

Y2 fom (34)
with
y,— ¥ —28b
= . .5
S (¥,— y—2nb)* + (x,— x —ma)? (3.3)
We take ,
E,, =e 9% (3.6)
where @), =(y,—y—2nbY’ + (x,—x—ma)?, and (34)
becomes
(y,— ¥ —2nb)
LY exp(—gw;
(v,—y—2nb)
+ Z Z#— (1 —exp(—q°w2,)). (3.7)
With the new variables
u=x,—x—ma, v=y,— ¥ — 2nb, (3.8)

(3.3) becomes

i o« oo .
—:k-(r‘,,—r)J‘ J enk

o ¥ —a0

v et dy

20,2 4 2
e—q(u +L),
u+ ol 2 (1 )

Z Zab
(3.9}

where

s p
k=2:(2, 2
Zﬂ(a’Zb)

r,,—r=(xpgx, .V,;—J’)

w=(u, v).

The evaluation of the double integral is discussed in
Appendix A. It vanishes if p=s5=0, Otherwise it has the
value

2n
-2 (3R exet—kstag, (3.10)
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Taking note of the p factor in (3.10), (3.9} becomes

psmk (r r)

exp(—k*/(4g%)), (3.11)

239>

where k°=4n*(s°/a’ + p?/(4b?)) and the term p=5=0 is
excluded. With the appropriate choice of ¢? (see below)
a sufficiently accurate evaluation of (3.11) only requires
Ipl <1 and [s| < 1. In practice we do not evaluate (3.11)
directly. Instead, since it represents the slowly varying far
field component, we evaluate it on a coarse grid in the rec-
tangle containing the vortex particles and then interpolate
to the vortex particles.

The second summation in (2.3) only requires a change in
the sign of y and r,—r in (3.11) is replaced by (x,—x,
Yot )

The first summation in (2.4) can be evaluated in the same
way. The same E,,, leads to the Poisson summation

zbzzwexpt—kvwn, (3.12)

where all variables have the same meaning as in (3.9). The
final expressions for 4v, and Av, are given in Appendix B.
A reasonable choice for ¢ is to choose it so that there is
a balance between the convergence of the #, m summation
and the p,s summation. Each is largely controlled by
cxponential terms of the same type. Requiring the rate of
falloff to be the same, we obtain
1

(o (G am)-

s
2ab

@ +4bY)  (3.13)

=>q2——

(3.14)

Typically we use rectangles with ¢ =24 and the terms
decrease as exp(—2n). The actual situation is complicated
by particles with small or large differences in |y, — y| and
|x, —x|. Taking note of the fact that we smooth close inter-
actions, satisfactory accuracy is achieved with n, m=1, 0, 1.

4. EYALUATING THE FINAL SUMMATIONS

The evaluation of the summations over m, n with E,,
converge rapidly. In practice this means that satisfactory
accuracy is achieved with n,m=1{0, +1. However, each
vortex particle then has 14 images (two image vortices in
each cell above and below; these are then repeated left and
right-according to the periodicity requirement making 12,
then two from the left and right repeats of the original
vortex particle).

We evaluate the contributions of these image particles
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using a quad tree ([2, 8] describe the three-dimensional
equivalent). The particles and their images are used to
calculate the node properties on the tree. This process is fast
and is proportional to N,n,, where #, is number of images
(14) per particle.

The tree was constructed by covering the vortex particles
and their images by a square. This was divided into four
cells. Each of these cells was divided into four cells and so
on, down to the chosen deepest level.

The node propertles of the cells include ¥, K;, 27, x; K,
21K, 3, %) K, ¥, v;’K,, and ¥, x] y/K, whlch enable
the mteraetlon to be replaced by moments about the cell
centre (thus x; = x;— x_, where x. is the x coordinate of the
cell centre and j denotes a vortex particle or image in the
cell). The expansion is about the cell centre rather than the
centre of vorticity since this quantity, unlike the centre of
mass, can be outside the cell, and even at infinity, because
the vorticity strengths can be positive or negative. The
expansions required are given in Appendix C,

Once the tree is constructed the contribution to the
velocity can be found by traversing the tree. Since this is
only done for the vortex particles, the presence of 14 images
per particle has only a tiny influence on the computational
time..

The algorithm runs significantly faster if the tree is
traversed with a group of particles. This can be done by
choosing a group to be the particles in a cell at the deepest
level and using a link list to access particles. The tree is then
traversed by each link-list cell in turn. Decisions about
opening nodes are made using the distance between the
centre of the link-list cell and the node cell.

As mentioned earlier, the far field (Poisson sum) terms
are calculated on a grid (10x 10 is sufficient), then inter-
polated to the particles. For the calculations described here,
bi-linear interpolation was used.

5. SMOOTHING

Smoothing the interaction gives better results, because
the vortices then more accurately approximate a smooth
vorticity distribution [11]. The direct interaction between
two vortices in the x — y plane, one at the origin with
strength K, and one at r, gives the second particle a velocity

Kixr
T2

(5.1)
The smoothed interaction replaces 1/r2 by
L [ wrar (52)
1"2 0 ’ ’

where W is a function which is zero for r > h. We can take
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W to be the piecewise continuous (C?) function based on a
spline (see [12] for the three-dimensional versions) given
by

2 2, 1y
-— -z O0geg=l
s 3 g+2g g
2 = —_— 1 .
W, h) n E(Z—g)% 1<gg2 (3:3)
0; g>2,

where g = r/h. This function has compact support so there is
no smoothing of the interaction for r > 2A. The smoothed
interaction factor

S=J Wr dr

Q

is easily found to be
i8-8+t g% O0<gxl

Plig -3+t —we’ -5 1sg<x2 (5.4)
s g=2

In practice (5.4} is not evaluated directly. A table of the
function (5.2) is calculated and when the smoothed inter-
action is required it is interpolated from the table. To speed
up the calculations, the exponentials in the n, m summation
are also interpolated from a table.

6. INVARIANTS

For a set of N interacting point vortices with strength X,
j=1,2,., N, itis easy to show [3] that the quantities

Z K, Z x;K;, Z ¥, K, E Kj({xj-X}2+ {y,— Y1) (6.1)

and
ZZKinIOg((xf_xj)z+(yi_yj)2) (6.2)
P#J

are invariant, where X = Y K;x;/> K, and Y =

Y K, y,/> K. The smoothed interaction also preserves five
invariants. The first four are identical to (6.1). The invariant
(6.2) arises because (5.1) can be written

v:%z’xV'P{r),

where ¥(r}=In(r). When smoothing is used

S(r)

)= | = dr, (63)
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and in the invariant (6.2) the log function is replaced by
(6.3).

These invariants were used in tests of the tree code on sets
of vortex particles in a region with no boundaries. When the
tree code parameters were set to ensure the maximum error
in v was <£0.6%, the errors in the invariants was <1 %.

7. TIME STEPPING

Any convenient time stepping can be used. For the
calculations described here, a predictor—corrector method
with an Euler predictor to the midpoint, and a corrector
step using the midpoint velocity, was used. The error per
step &t is then o (5¢)%

For the applications considered here, where the particles
start with minimum separation 4, the time step was chosen
according to

dt=0.125 d*/K,

where K is the maximum vortex particle strength. Because
the strength is oc{d? where { is the vorticity, the time
step 1s independent of d and, therefore, for the problems
described in Section 9, it is independent of the number of
vortex particles.

8. COMPARATIVE TIMINGS

Our tree code (T) was tested by applying it to a set of par-
ticles with no boundaries and comparing the results with
direct summation (D) and the fast multipele moment
technique {(F) [67]. For 2000 particles the times, in seconds,
on a Silicon Graphics Iris for the calculation of ail velocities
were D :40s, T: 155, F: 7s. For 10,000 particles the times
were D :894s, T:112s, F; 57s. The time scales with par-
ticle N as N2 for D and N In N for T and F. The latter should
scale as N [[6] but overhead may be corrupting the estimate.
The first conclusion is that the fast multipole moment
technique is the fastest. However, the tree code is very
flexible; it can be easily adjusted to include our exponentiai
E factors, and it can be easily adjusted to include a different
smoothing length for each particle. For that reason we
prefer it. Furthermore, it can be easily applied to three-
dimensional (vortex tube) simulations.

It may be of interest to note the times that the full image
program with 660 particles took to calculate all velocities
for one step on the following computers:

Iris 4D/20: 104 s

Dec 2100: 9.0s
Dec 3100: 6.7s
Vax 6410: 89s,
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The efficiency of the tree code depends on the particle
configuration (clumped or uniformly spread), the rule for
opening a node, and the maximum depth. We set the maxi-
mum depth (level) of the tree to be seven and the rule for not
opening a node is that its half width H and its distance D
from the point whose v is required satisfies

D>\/EH,

giving errors of 0.6% when calculated using the zeroth,
linear, and quadratic terms in the node expansion (see
Appendix C). By adjusting the condition on D any desired
accuracy can be achieved. The error varies as (H/D)*. We
have found that at the 0.6% level is satisfactory for the
examples treated here (see Section 9). Note that it is an
advantage to include the quadratic terms, but experiments
showed that including the next terms in the expansion did
not repay the extra work.
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9. TESTS

The simplest test of the tree code is to apply it to a small
number of vortex particles in the absence of boundaries.
A single particle should remain at rest; a pair of vortex
particles can be set up so that they move in a binary orbit
or move off in straight lines. The tree code was found to
satisfy these tests accurately.

A similar simple test, but with a boundary, is to place a
particle close to a boundary It should move parallel to the
boundary.

A detailed comparison with direct summation shows that
the tree code with the D > \/ﬁ H rule has errors ~0.6%.

10. APPLICATIONS

A demanding test is to apply the algorithm to the
Kirchoff vortex. This vortex is an ellipse of constant vor-
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FIG. 1. (a) Kirchoff vortex with no boundaries. 1700 particles and no smoothing,. See text for further details. The ellipse was orientated initially
so that the major axis was parallel to the x axis. The darker dots denote particles initially in the right half of the ellipse. (b) Kirchoff vortex with no
boundaries. 1700 particles and smoothing. (¢} Kirchoff vortex with no boundaries. 100 particles and smoothing.
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ticity { in a background with zero vorticity. In the absence
of boundaries the ellipse should rotate with constant
angular velocity [10, Art. 159]

AB{
O= TR (10.1)
where A4 and B are the semi-major and minor axes, respec-
tively. I the vortex is placed in a region of the kind con-
sidered in this paper the boundaries will have an effect on
the motion of the vortex, but the effect will be small if the
region is large compared to the vortex.

Figure 1 shows the motion of a Kirchoff vortex in the
absence of boundaries. The axis ratio is 1.5, { =2, A =0.05,
and @ =(0.48, so that the period is 13.09. The calculations
used 1700 particles. Vortex particles were placed initially on
a grid with square cells of area ¢. Only the vortices within
the ellipse were accepted. The grid therefore produces small
stable perturbations on the boundary of the ellipse. The left
frame is rom a calculation without smoothing, and the
right frame is from a calculation with smoothing. It is clear
that smoothing keeps the particles more orderly. Because it
is intended to apply the technique to cyclonic structures,
which may only involve a small number of particles, the
vortex motion was simuiated with just 100 particles. The
results are shown in the third frame of Fig, 1. In this case the
edge perturbations are larger because the ellipse is only
crudely modeclled by particles taken from a grid of square
cells. Despite this, the motion is very similar to that of the
same vortex with 1700 particies.

Figure 2 shows a frame taken from a simulation of the
motion of the Kirchoff ellipse with boundaries of the type
considered in this paper (a=#4=1). This calculation used
778 particles. The results are very similar to those found
without boundaries, showing that the boundary conditions
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FIG. 2. Kirchoff vortex using the image method with a=b=1.
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on the computational boundary simulate an infinite sea
satisfactorily.

The Kida vortex is an elliptical patch of vortex in a shear-
flow background. Kida showed that the equations could be
reduced to a simple Hamiltonian system for the parameters
and orientation of the ellipse. The ellipse remains an ellipse,
but the semi-major and minor axes, and the orientation,
change with time.

The shear flow is a region of constant vorticity. In this
case particles are given the appropriate vorticity for the
ellipse or the shear flow, depending on their initial position.
Because the shear flow carries particles out of the computa-
tional zone the east-west periodic conditions require that
identical particles reappear through the opposite side.
Twenty-five hundred particles were placed in the computa-
tional box (a=&=1). The vorticity in the ellipse was one
and the vorticity outside was 0.1.

In Fig. 3 the motion of a Kida vortex system [9] is
illustrated by showing the velocity vector for each particle.
The shear flow is zero along the central line {y=0.5) and

2.8 : = £

8g.e 9.2 9.4 B.6 9.8 1.0
. 3.21E-82

1.0

a.2

8.8

.2 @e.2 .4 8.6 8.8 1.8

FIG. 3. EMliptical vortex patch in a shear flow (Kida vortex) with
images, 2500 particles and smoothing.



158

should be parallel to the upper and lower boundaries near
those boundaries. The vortex particle flow clearly satisfies
those conditions. In this case the elliptical patch is stretched
by the shear flow, but maintains its elliptical form in agree-
ment with Kida’s equations. A more detailed discussion of
the Kida vortex will be given elsewhere in connection with
the application of this method to cyclones.

11. CONCLUSION

The resuits of the tests and calculations with Kirchoff and
Kida vortices show that the combination of tree code and
Ewald’s method gives an efficient algorithm. No attempt
was made to fine-tune the algorithm with respect to smooth-
ing length, levels in the tree, calculation of the far field on
the grid, or time stepping. As a consequence, higher speed
can be expected. The method has great flexibility and can be
extended to handle the case where the smoothing of the vor-
ticity uses an £ for each particle. In this way a wide range in
vortex particle number density can be accommodated as in
the related case of self-gravitating particles | 8].

APPENDIX A

The evaluation of

v dv du
o

1={" 7 emrpi—emuted] (A1)
—o Yo

Note, first, that if £ =0 then the integral vanishes because
the integrand is an odd function of v. We assume then that
k#0.

We let u=wcos 8, v=wsin § and k= (k cos a, k sin &),
Then

o =21
I=J. J‘ gkw cos(z—8) sin 9[1 —exp(—qzwz)} dw d8.
0o 0

(A.2)
Let ¢ =8 — « and the integral over § becomes
2z 1
sina) [ e% <9 cos(g) dp = 2SI 0 5 ew) dw,
0 ik ow
(A3)

which vanishes if k = 0. Substituting (3) into (2) we obtain

27 sin

=== () J‘o [L—exp(—g*w") 1= Jolkw) dw.  (A4)
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Integration by parts (assuming k # 0) gives

[~ _dnsin(@) | T Ikw) we=" dw.  (A.5)
ik 0

The remaining integral is known and the final result is

2m sin(2)

I=— ik

exp(—k*/(44%)). (A.6)

The 4v, contribution requires an integral which is similar
to I except that the # in the numerator is replaced by w.
The resulting integral is

2m cos(x)

o SXp(—k*/(4g%)). (AT)

Note that sin o = np/(bk) and cos(x) = 2rs/(ak).

APPENDIX B: EXPRESSIONS FOR THE
YELOCITY CONTRIBUTIONS

The contributing particle is at (x, y). The particle whose
velocity we require is at (x,, v,). Let

}i=(y, t y—2nb)" + (x,— x — ma)?,
Eoml ) =5, £ )02, (),

where s,, is the smoothing function for the w,, (see
Section 5, where, in (5.4), r is replaced by @,,,),

E,.(1) =exp(—q’w;, (1))

Then with
r,—ri=(x,—x yp+y)
- Ti=(X,— X, ¥, ¥}
s p
k=2rn{-, =
’“(a’ (Zb))’
we find

K
dv, = “E;ZZ(yp—y—Enb) Bl =) Epp( —)
K
+3 R L 0p+ Y= 2b) ganl+) Epn(+)
K 2
(£ &) rzmm

—sink-(r,—r)] % i
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Av."=i§zz(x,ﬂ_x_ma) gnm(_)Enm(—)
L
K
—EZZ(xp—x_ma) gnm(+)Enm(+)

K\/2n? .
_(g)(—;;—)%:; [sin{k -{r, —1"))

—sin(k -(r,—r))] % P
APPENDIX C

This appendix gives the interaction term in the m, »
summation in terms of an expansion. For the tree code this
expansion involves moments about the centre of a cell.

Letr,,. R be the position of the particle and the cell centre
(node), respectively. Let r; be the position of a particle
{either real or image) in the cell. The contribution to the
velocity of p is given by

1 Fx(r,-r,;
mly g 22

exp{—q* r,—r,|?);
> ]rp*rjlz 7 ¥

letr;=R+r/and let D=r,—R=(D,, D). Defining
S=2K;  S=YyK; S,=XxK
j i i

S, =Y xK; Sa=Yx7K; S,,=3Y v’k
i K F

1 4 4q°
cl=2(q2+ﬁ) 62=F+2(q2)2+57
e b =S8.,D
fl'_e 27CD2 1= “Pxx x+SxyDy

fa=e(D D +D, D)} by=85,D,+8.,D,

and expanding about D gives v, = (v, v,) in the forms:

zeroth and linear terms retained,

vy=—fiDUS+ 13}
vy= +/1DAS+13)

381107/1-11

zeroth, linear, and quadratic terms retained,

ve=—fiDJAS+ 2+ F3}—S§,— ¢, b))
U_v= +f1(SDx+f2Dx_Sx)s

where fy=c,(b, D, +5,D,)— 1 C(S, .+ 5,,).

is

We give the two approximations to v, v, here because it

useful to compare the advantage of higher accuracy

{which does not require opening up so many nodes) with
the disadvantage of extra work.
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